

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3963-3965

Synthesis of 2-Fluoronoraristeromycin and Its Inhibitory Activity against *Plasmodium falciparum S*-Adenosyl-Lhomocysteine Hydrolase

Yukio Kitade,^{a,*} Hiroharu Kojima,^a Fazila Zulfiqur,^a Hye-Sook Kim^b and Yusuke Wataya^b

^aDepartment of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan ^bFaculty of Pharmaceutical Sciences, Okayama University, Tsushimanaka 1-1-1, Okayama 700-8530, Japan

Received 30 June 2003; accepted 28 August 2003

Abstract—Palladium-coupling reaction of (1S, 4R)-cis-4-acetoxy-2-cyclopenten-1-ol with sodium salt of 2-fluoroadenine resulted in the formation of (1S, 4R)-4-(6-amino-2-fluoro-9*H*-purin-9-yl)cyclopent-2-en-1-ol. Subsequent oxidation was carried out with osmium tetraoxide (OsO_4) in the presence of 4-methylmorpholine *N*-oxide (NMO) to give 2-fluoronoraristeromycin, possessing significant inhibitory activity against recombinant *Plasmodium falciparum* SAH hydrolase. © 2003 Elsevier Ltd. All rights reserved.

S-Adenosyl-L-homocysteine (SAH) hydrolase emerged as a target enzyme for the molecular design of antiviral, antitumor, antiparasitic, antiarthritic and immunosuppressive agents. ¹⁻³ SAH is formed after the donation of the methyl group of S-adenosyl-L-methionine (SAM) to a methyl accepter and is hydrolyzed to adenosine and homocysteine by SAH hydrolase, physiologically. Inhibition of SAH hydrolase results in cellular accumulation of SAH. It is a potent feedback inhibitor of SAM-dependent biological methylation such as the 5'-end of eukaryotic mRNA.1,4 In contrant to human SAH hydrolase, Plasmodium falciparum SAH hydrolase contains a 41-amino acid insert (Gly 145-Lys 185) inside the sequence.⁵ P. falciparum causes malignant malaria. This difference may produce selective sensitivity against each SAH hydrolase inhibitor. Neplanocin A (1) and aristeromycin (2) are naturally occurring products possessing inhibitory activity against SAH hydrolase. When these inhibitors work as a substrate for adenosine kinase, they show cytotoxicity. Neplanocin A (1) and aristeromycin (2) are also known to be rapidly deaminated by adenosine deaminase to a chemotherapeutically inactive inosine congener.⁶ In order to overcome these disadvantages in the development of chemotherapeutic agents, chemical modifications of carbocyclic nucleosides have been carried out. Because noraristeromycin (3) lacks the 5'-methylene unit of aristeromycin (2), it does not work as a substrate for adenosine deaminase (Fig. 1). Recently, we have found that IC_{50} of noraristeromycin (3) against human and *P. falciparum* recombinant SAH hydrolase⁷ is 1.1 and 3.1 μ M, respectively.⁸

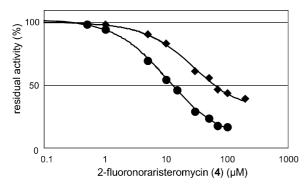
Figure 1. Structure of carbocyclic nucleosides.

We have reported a method for the preparation of noraristeromycin derivatives possessing 2- or 8-position modified adenine or 8-aza-7-deazaadenine.⁸ Among these derivatives, 2-aminonoraristeromycin selectively showed inhibitory activity against recombinant *P. falci*parum SAH hydrolase. In the course of the investigation, we envisaged that a noraristeromycin derivative possessing a polar-substituent at the 2-position of the adenine ring would have selective inhibition against

^{*}Corresponding author. Tel.: +81-58-293-2640; fax: +81-58-293-2640; e-mail: kitade@biomol.gifu-u.ac.jp

P. falciparum recombinant SAH hydrolase. Furthermore, it has been documented that the introduction of a halogen atom at the 2-position of adenine nucleosides prevented a decrease in the biological activity by the adenosine deaminase digestion.⁹

This paper describes a convenient method for the preparation of 2-fluoronoraristeromycin (4) with the aim of developing antimalarial agents, which possess inhibitory activity against recombinant *P. falciparum* SAH hydrolase.


Chemistry

Palladium-coupling reaction¹⁰ of (1*S*, 4*R*)-*cis*-4-acetoxy-2-cyclopenten-1-ol (**5**) with sodium salt of commercially available 2-fluoroadenine resulted in the formation of (1*S*, 4*R*)-4-(6-amino-2-fluoro-9*H*-purin-9-yl)cyclopent-2-en-1-ol (**6**) in 60% yield. Subsequent oxidation of compound **6** was carried out with osmium tetraoxide (OsO₄) in the presence of 4-methylmorpholine *N*-oxide (NMO) to give 2-fluoronoraristeromycin (**4**) in 87% yield. The structures of compounds **4** and **6** were supported by spectral data (¹H NMR, ¹³C NMR, MS and HRMS) and microanalytical results (see refs 11 and 12) (Scheme 1).

Biological Activities

A profile of the inhibitory activity of 2-fluoronor-aristeromycin (4) against recombinant *P. falciparum* and human SAH hydrolase is shown in Figure 2. Introduction of a 2-fluoro substituent to the adenine ring of noraristeromycin (3) causes moderate selectivity against

Scheme 1. Reagents and conditions: (i) 2-fluoroadenine, NaH, (Ph₃P)₄Pd, DMSO, THF, 55 °C; (ii) OsO₄, NMO, THF, H₂O.

Figure 2. Inactivation of SAH hydrolase by compound **4.** SAH hydrolase was incubated with compound **4** at $30 \,^{\circ}$ C [(\bullet) *P. falciparum* SAH hydrolase, (\bullet) human SAH hydrolase].

P. falciparum SAH hydrolase as determined by inhibitory activity on the synthetic direction of SAH. Inhibitory activities (EC₅₀ and K_i values) of compounds 3 and 4 against human and P. falciparum recombinant SAH hydrolases are summarized in Table 1 (see ref 13). Noraristeromycin (3) showed IC₅₀ values of 1.1 and 3.1 μM against human and P. falciparum SAH hydrolase, respectively. The K_i values against human and P. falciparum SAH hydrolase were 0.16 and 0.18 µM, respectively. The selective index (human SAH hydrolase/ P. falciparum SAH hydrolase) of compound 3 based on the corresponding K_i values is 0.89. On the other hand, 2-fluoronoraristeromycin (4) is a more significant inhibitor against P. falciparum SAH hydrolase (IC₅₀ = 13 μ M and $K_i = 0.48 \mu M$) than against human SAH hydrolase (IC₅₀ = 63 μ M and K_i = 7.9 μ M). The introduction of a fluorine atom to the 2-position of the adenine ring brought an 18-fold increase in the selective index (see Table 1).

In vitro antimalarial activities and cytotoxicities of compounds 3 and 4 were determined according to the method previously described. As shown in Table 2, the toxicity of the 2-fluoro derivative (4) against FM3A cells brought about 100-fold decrease in comparison with that of noraristeromycin (3). However, antimalarial activity of 2-fluoronoraristeromycin (4) did not change, and the selective index, based on in vitro antimalarial activity, increased to 0.97 from 0.01.

In this research, we have found that 2-floronoraristeromycin (4) showed significant selectivity against *P. falciparum* SAH hydrolase and possessed moderate inhibition against *P. falciparum* proliferation. Introduction of a fluorine atom to the 2-position of the adenine ring of noraristeromycin (3) decreased the cytotoxicity against mammalian cells (FM3A). This observation provides a clue to the development of facile chemotherapeutic agents against malaria.

Table 1. Inhibitory activities of compounds against human and *P. falciparum* SAH hydrolases

Compd	Human		P. falciparum		Selective index ^a
	IC ₅₀ (μM)	Ki	IC ₅₀ (μM)	Ki	
3	1.1	0.16	3.1	0.18	0.89
4	63	7.9	13	0.48	16

^aSelective index: mean of K_i value for human SAH hydrolase/mean of K_i value for P. *falciparum* SAH hydrolase.

Table 2. Inhibitory activities of compounds against FM3A and *P. falciparum*

Compd	FM3A ^a EC ₅₀ (μM)	P. falciparum ^b EC ₅₀ (μM)	Selective index ^c
3	0.072	7.4	0.01
4	7.2	7.4	0.97

^aFM3A is a mammalian cell.

^bP. falciparum is human malaria parasites.

 $^{^{}c}$ Selective index: mean of EC₅₀ value for FM3A cell/mean of EC₅₀ value for *P. falciparum*.

Acknowledgements

This research was in part supported by Grants-in-Aid for Scientific Research on Priority Areas (KAKENHI 13226034 and 14001072) (to Y.K.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and a Grant-in-Aid for JSPS Fellows (to F.Z.) from Japan Society for the Promotion of Science (JSPS).

References and Notes

- 1. (a) Keller, B. T.; Borchardt, R. T. In *Biological Methylation and Drug Design: Experimental and Clinical Roles of S-Adenosylmethionine*; Borchart, R. T., Creveling, C. R., Ueland, P. M., Eds.; Humana: Clifton, NJ, 1986; p 385 (b) Wolfe, M. S.; Borchardt, R. T. *J. Med. Chem.* 1991, 34, 1521. (c) Chiang, P. K. *Pharmacol. Ther.* 1998, 77, 115, and references cited therein
- 2. Wolos, J. A.; Frondorf, K. A.; Babcock, G. F.; Stripp, S. A.; Bowlin, T. L. Cell. Immunol. 1993, 149, 402.
- 3. (a) Bitonti, A. J.; Baumann, R. J.; McCann, P. P. *Biochem. Pharmacol.* **1990**, *40*, 601. (b) Henderson, D. M.; Hanson, S.; Allen, T.; Wilson, K.; Coulter-Karis, D. E.; Grrenberg, M. L.; Hershfield, M. S.; Ullman, B. *Mol. Biochem. Parasitol.* **1992**, *53*, 169. (c) Wolos, J. A.; Frondorf, K. A.; Esser, R. E. *J. Immunol.* **1993**, *151*, 526.
- 4. Liu, S.; Wolfe, M. S.; Borchardt, R. T. Antiviral Res. 1992, 19, 247.
- 5. Creedon, K. A.; Rathod, P. K.; Wellems, T. E. J. Bol. Chem. 1994, 269, 16364.
- 6. Keller, B. T.; Borchardt, R. T. In *Biological Methylation and Drug Design*, Borchardt, R. T., Creveling, C. R., Ueland, P. M., Eds.; Hummana: Clifton: NJ, 1987; p 385.
- 7. Nakanishi, M.; Iwata, A.; Yatome, C.; Kitade, Y. J. Biochem. 2001, 129, 101.
- 8. Kitade, Y.; Kozaki, A.; Miwa, T.; Nakanishi, M. *Tetrahedron* **2002**, *58*, 1271.
- 9. (a) Montgomery, J. A. Cancer Res. 1982, 42, 3911. (b) Montgomery, J. A. Med. Res. Rev. 1982, 2, 271.

- 10. Trost, B. M.; Kou, G. H.; Benneche, T. J. Am. Chem. Soc. 1988, 110, 621.
- 11. Data for **6**; mp 210 °C; ¹H NMR (CDCl₃) δ : 8.02 (s, H-8, 1H), 7.78 (s, NH₂, 2H), 6.17 (d, J=5.2 Hz, H-3′, 1H), 5.98 (d, J=5.6 Hz, H-2′, 1H), 5.30 (d, J=5.6 Hz, H-4′,-1′, 2H), 4.70 (s, OH-4′, 1H), 2.87 (m, H-5′, 1H), 1.68 (m, H-5′, 1H); ¹³C NMR (CDCl₃) δ : 158.62 (d, J=184.7 Hz), 157.50 (d, J=3.9 Hz), 150.22 (d, J=19.8 Hz), 139.52, 139.42 (d, J=2.9 Hz), 130.52, 117.22 (d, J=3.9 Hz, 1C), 73.62, 57.07, 41.26. Mass (EI) m/z: 235 (M⁺), 207, 206, 153, 133; HRMS (EI) cald for C₁₀H₁₀FN₅O 235.0869 found 235.0864. Anal. calcd for C₁₀H₁₀FN₅O·1/5 EtOAc: C, 51.30; H, 4.62; N, 27.70, found: C, 51.47; H, 4.77; N, 27.90 (crystallization from EtOAc).
- 12. Data for 4; mp 233 °C (dec); ¹H NMR (DMSO- d_6) δ : 8.14 (s, H-8, 1H), 7.75 (s, NH2, 2H), 5.16 (d, J=4.4 Hz, OH-d', 1H), 5.00 (d, J=6.8 Hz, OH-2', 1H), 4.88 (d, J=3.6 Hz, OH-3', 1H), 4.58 (q, J=8.8 Hz, H-1', 1H), 4.42 (q, J=6.4 Hz, H-2', 1H), 3.88 (t, J=1.6 Hz, H-d', 1H), 3.73 (s, H-3', 1H), 2.56 (m, H-5', 1H), 1.74 (m, H-5', 1H); 13 C NMR (DMSO- d_6) δ : 158.51 (d, J=172.7 Hz), 157.40 (d, J=7.8 Hz), 150.93 (d, J=19.9 Hz), 140.13 (d, J=2.9 Hz), 117.41 (d, J=4.4 Hz), 76.58, 75.23, 73.54, 58.24, 36.49; Mass (EI) m/z: 269 (M $^+$), 195, 180, 154, 134; HRMS (EI) cald for $C_{10}H_{12}FN_5O_3$ 269.0924, found 269.0933. Anal. calcd for $C_{10}H_{12}FN_5O_3 \cdot 1/2 \cdot 1/2$ 3H₂O: C, 43.64; H, 4.64; N, 25.44. Found: C, 43.88; H, 4.50; N, 25.09 (crystallization from EtOAc).
- 13. The enzyme was incubated with 100 μL adenosine, 5 mM DL-homocysteine and inhibitors in 0.2 mL of 10 mM potassium phosphate, pH 7.2, buffer at 30 °C for 2 min in the standard assay ststem (see ref 8). The reaction was started by the addition of 5 μL of SAH hydrolase (human: 0.43 μg, *P. falciparum*: 0.54 μg) and terminated by the addition of 20 μL of 0.67 N HCl. The reaction mixture was kept on ice until the HPLC analysis. The mixture was analyzed for SAH by a Shimadzu LC-10A VP HPLC system. In the synthetic reaction, one unit of SAH hydrolase was defined as the amount synthesizing 1 μmol of SAH/min at 30 °C.
- 14. Kim, H.-S.; Nagai, Y.; Ono, K.; Wataya, Y.; Tsuchiya, K.; Masuyama, A.; Nojima, M.; Mccullough, K. J. *J. Med. Chem.* **2001**, *44*, 2357.